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ON THE CONSERVATION AND CONVERGENCE TO WEAK SOLUTIONS OF

GLOBAL SCHEMES*

MARK H. CARPENTERt, DAVID GOTTLIEBT, AND CHI-WANG SHU§

Abstract. In this paper we discuss the issue of conservation and convergence to weak solutions of several
global schemes, including the commonly used compact schemes and spectral collocation schemes, for solving

hyperbolic conservation laws. It is shown that such schemes, if convergent boundedly almost everywhere,

will converge to weak solutions. The results are extensions of the classical Lax-Wendroff theorem concerning

conservative schemes.

Key words, conservation laws, conservation, weak solutions, convergence

Subject classification. Applied and Numerical Mathematics

1. Introduction. We are interested in numerical solutions to the conservation laws:

1.)ut + f (u) ' = O, u(x, O) = u° (x), -1 < x < 1

Here we have written (1.1) in the one dimensional form, but the results of this paper are also valid for multi

dimensions.

The purpose of this paper is not to study the issue of convergence. We actually assume that the numerical

solution converges boundedly a.e. (almost everywhere), to a certain function u(x, t). More precisely, for a

numerical scheme defined at the (uniform or nonuniform) grid points xj, 0 < j :_ N, with Ax = max(xj+l -

xj) and vj(t) as the numerical solution at x = xj, we define the function vAx(x, t) by

(1.2) vAX(x,t) = vj(t), Xj < X < Xj+1,

and assume that vAr(x, t) is uniformly bounded with respect to x, t, and Ax, and, as Ax -4 0, vA(x, t)

converges pointwise a.e. to u(x, t). See, e.g., [5, 16, 17, 20] for discussions, in the scalar case, of convergence

of some of the schemes studied in this paper, under the L' boundedness assumption. We will concentrate

on the issue of whether the limit function u(x, t) is a weak solution to (1.1), that is whether it satisfies

(1.3) -fT I (u(x,t) Ot(x,t) + f(u(x,t))O(x,t)) dxdt - u0 (x)q(x,0)dx = 0

for any smooth function O(x, t) which is compactly supported. Also, in this paper we only consider semidis-

crete method-of-lines schemes, i.e. schemes which are discretized in the spatial variable(s) only.

The classical result in this area is the famous Lax-Wendroff Theorem [11]:

Theorem 1.1. (Lax and Wendroff) If the numerical solution of a conservative scheme:

(1.4) (vj)t +=0
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where the numerical flux

(1.5) fi+' = V -p ---., Vj+q)

is local (i.e. p and q are constants independent of Ax), Lipschitz continuous in every argument, and consistent

with the physical flux f(v, ..., v) = f(v), converges boundedly a.e. (almost everywhere) to a function u(x, t),

then u(x, t) is a weak solution to (1.1).

The proof follows easily from a summation by parts and an application of the dominant convergence

theorem. See LeVeque [13] for a slightly different version of this theorem and its proof.
The Lax-Wendroff Theorem, however, does not cover global schemes, i.e. schemes which can not be

written in the form (1.4) with a local flux i+I.. Examples of global schemes include the compact schemes

[12, 2, 3. 5], and various spectral Galerkin or collocation schemes (Fourier, Legendre, Chebyshev) [9, 1, 6].

We will extend the Lax Wendroff Theorem to these global schemes in this paper.

We remark that there are discussions in the literature about schemes which are not of the conservative

form (1.1) but nevertheless still converge to weak solutions. One such example is the class of schemes for

general curvilinear coordinates, see [19] for a proof that such schemes actually do converge to weak solutions.
In [8] the authors discussed conservation issues of Chebyshev methods. However, they only considered

the mean of the solution, that is, they verified that the limit solution satisfies (1.3) with O(x, t) = 1.
The organization of the paper is as follows. In Section 2 we discuss compact schemes. Section 3 contains

the Legendre collocation method, while Section 4 discusses the Chebyshev method. Section 5 discusses the

Legendre approximation in the multi-domain case.
To close this section we mention that in this paper C (or c) is a generic constant.

2. Compact Schemes. Compact schemes are methods where the derivatives are approximated by
rational function operators on the discrete solutions. We consider compact schemes defined on a uniform

grid xj, 0 < j < N. For example, a fourth order central compact approximation to the derivative is [12]:

1 1
(2.1) - ((vx)j- 1 + 4(v,)j + (vx)j+i) = - (Vj+1 - Vj-1)

and a third order upwind compact approximation to the derivative is [5]:

(2.2) 1 (-(vx)j-l + 5(v.)j - (vx)j+ ) = (3vj - 4vj- + Vj2).

Adequate boundary conditions must be used for the compact schemes, to retain accuracy and stability, see
[2], [3] for details. Together with boundary conditions, a compact scheme for (1.1) can be written as

(2.3) Pvt + Qf(v) = --T(VB - gB)

where v = (VO, ...VN)* is the numerical solution, r is a constant, VB = (Vo, 0, ... , 0, VN)* is the boundary part

of the numerical solution, and gB = (go, 0,..., 0, 9N)* is the given boundary data. Depending on the wind
direction, one or both of the first and last components of VB and gB may also be zero(s). The matrices P

and Q satisfy the following conditions [3]:
9 P is symmetric, and satisfies

(2.4) PO - ¢ = O(Ax)

Here and below, 0 = (O(x0), ... , O(XN))*, and O(x) is an arbitrary smooth (C' or smoother) function.
O(Ax) for a vector means that each component is bounded by a constant times Ax, and the constant

depends only on the derivatives of O(x);
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e Q is "almost" anti-symmetric, that is:

(2.5) Q + Q* = R + S

where R = (rij), and rij = 0 except for ro0 and rNN. S is either identically 0 for the central compact

schemes, or satisfies

(2.6) SO = O(AX)

for the upwind compact schemes, where ¢ is defined as before. Also, Q is at least a first order

approximation to the derivative:

(2.7) QO - Ox = O(Ax).

We can easily verify that all the compact schemes in [12, 2, 3, 5] satisfy the above conditions for P and

Q.
For such compact schemes we can state the following proposition:

Proposition 2.1. If the solution of the compact scheme (2.3) converges almost everywhere to a function

u(x, t), then u(x, t) is a weak solution to (1.1).

Proof: For any compactly supported, C 2 function O(x, t), we denote by 0 = (¢(xo, t), ... , O(xN,t))*, left
multiply (2.3) by €*, and integrate over [0,T] to obtain:

fT  (Pvt + Qf(v)) dt= 0

due to the zero boundary conditions of ¢. Now integrating by parts in t for the first term, taking a transpose

of the equation (which is a scalar), and using the symmetry of P and condition (2.5) of Q, we obtain:

- fT (vPt + f(v)*QO) dt - (v*PO) It=o = - f(v)*Sodt

Or, considering (2.4), (2.6), (2.7), and the uniform boundedness (with respect to the mesh size Ax) of v,

(2.8) -f
T (v*¢t + f(v)*¢x) dt - (v*O) It=o 0 0(1)

where the constant term 0(1) results from a summation of N = terms of (Ax) quantities; theermso(x uniis h

constant depends only on the derivatives of O(x).
Recalling the definition of the function vAx (x, t) in (1.2), we can multiply (2.8) by Ax to obtain

T 1 /1

(2.9)- (vAx(x, t) 0Ax (x, t) + f(vA(x, t)) x(x, t)) dx dt - vAx(x, O)¢Ax(x, 0) dx = O(Ax)

where

(2.10) 0(x, t) = O(x, t), x(x t) = Ox(xj,t), Ax(x,t) = (xj,t), xj < x < xj+j,

By assumption, vAx(x,t) converges to u(x,t) boundedly a.e. There is no problem about the uniform

convergence of OAx(x, t), , t) and 0Ax(x, t) due to the smoothness of 0. By the dominant convergence

theorem, taking the limit as Ax -- 0 in (2.9), we obtain (1.3). This proves that u(x, t) is a weak solution of

(1.1).



3. Legendre Spectral Collocation Schemes. The Legendre collocation method can be written in

the following way:

(3.) UN (X,t) D9IN! (UN(X,t)(3.1) at + aX SV(UN(X, t)) + BUN(X, t)

where uN(x, t) is the numerical solution which is a polynomial of degree at most N in x, IN is the Legendre

interpolation operator, i.e. for any function g(x), INg(x) is the unique polynomial of degree at most N

satisfying INg(xj) = g(xj) at the N + 1 Legendre Gauss-Lobatto points xj, which are the zeros of the

polynomial (1 - x 2 )P', where PN is the Legendre polynomial of degree N.

The term SV is the spectral viscosity term needed to stabilize the scheme and in order for the assumption
"vAx(x, t) converges boundedly a.e. to a function u(x, t)" to be realistic. We consider here the superviscosity

term

(3.2) SV(UN)-=(12- ["_1 Ux,)-UN(x,t)

f is the superviscosity coefficient, s is an integer growing with N [21, 10, 14, 15]. We remark that this

superviscosity term is equivalent in practice to a low pass filter.

Finally, the boundary term BUN (X, t) could be either 0, or

T(UN(1,t) -gl)(1 + x)P(x),

or

T(UN(-1,t) - g_-)(1 - X)PK(X),

or a combination, depending on the wind directions at the boundary points. Here T is a constant chosen for

stability and g, and g-1 are functions of the time only.

Let O(x, t) be a test function in CO. Take ON-1(X, t) = IN-10(x, t), then clearly ON-1 are polynomials of

degree at most N-1 and vanish at both boundary points x = ±1. Also ON-1(X, t) -- O(X, t), (ON-1).(X, t) --

Cz(x,t), and (¢N-1)t(x,t) -* t(x,t) uniformly.

We denote now by

(f, g) = f(x)g(x)dx

and by

N

(f,g)N = E f(x)g(x)wj
k=O

where wj > 0 are the weights in the Gauss-Lobatto formula. We note that (f,g)g (f,g) if fg is a

polynomial of degree at most 2N - 1.

We first show that the boundary terms do not cause a problem:

Lemma 3.1.

(3.3) (ON-1,BUN) = 0.
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Proof. We start by observing that

(ON-1, BUN) = (ON-1,BuN)N.

BUN vanishes for the inner Gauss-Lobatto points and ON-1 vanishes at the boundaries and therefore the
Lemma is proven.

With (3.3), we multiply (3.1) by ON-I (x, t), integrate over x, and integrate by parts for the second term
to obtain

[N-1 , t) a X, t) dx [1 ON(Xt) INf (UN (X, t)) dx
J~~1i~ a t j_ Ox

(3.4)Nl(x,t) 1x2)- UN(x,t) dx.y2s-1 1NIXt IT x

We now estimate the right hand side of (3.4):

Lemma 3.2.

(3.5) lim NOs -N1(X, t) [-(1-X2) UN(X, t) dx = 0.N-,,, -1 ITTX1

Also, the quantity under the limit sign is uniformly bounded with respect to t.

Proof: Since ON-1 is a polynomial of degree N - 1,

N-1

4N-I (X,t) =: E&,kN(t)Pk(X)

k=O

where k,N(t) are the collocation Legendre coefficients of the test function ¢. Note that

- x2)Ta Pk(x) (-1)sks(k + 1)sPk (x),

and therefore

N

(ON-,, SV(uN)) = (-1)- N 2s-l Z kS(k + l)s9k,N(t)ik,N(t)(Pk, Pk),
k=O

Here fk,N are the Legendre collocation coefficients of UN. We note that as a consequence of the uniform
boundedness of UN(xj) and the fact that 0 is in Co,

(3.6) Ik,N(t)utk,N(t)I :- C .

This implies (3.5) and the uniform boundedness of the quantity under the limit sign with respect to t.

0
We thus only have to deal with the left hand side of (3.4). We integrate (3.4) in t, integrate by parts for

the first term, and use Lemma 3.2 to obtain:

- UN(X -t + INf(UN(X,t)) Ox dxdt

(3.7) - (X,0)N 1(X,0)dx= o(1).
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It looks like we can immediately take the limit as in the Lax-Wendroff Theorem. The trouble is that, we

have only assumed the uniform boundedness of UN(xj, t), hence of f(uN(xi, t)), but this does not imply the
uniform boundedness of either UN(X, t) or INf (uN(X, t)) due to the lack of regularity.

We need the following Lemma:
Lemma 3.3. Let VAX be the piecewise linear polynomial taking the values UN(Xj, t), then

(3.8) (UN (X, t), 80N-1 (X,t) V C IN(X,t) +
at )' (a

(3.9) (INf(UN(X, t)), N-1 (X,t Nf(VA) 9 ) ±o().

Proof: We will switch back and forth between integrals and quadrature summations:

UN(X, t), 9ON-1 (,t)) (X,t),9N- (X, t).)aot t) at )
u ~ ' )  

No

N t9ON-1 (Xj, t)

at
j=O

- O(X)vAx (X,t)(ONI)t"(X, t)dx

where

0 (X) -- j , xj _5 X < xj+I.

xj+1 - xi

In [18] it has been established that 0(x) is uniformly bounded and converges a.e to 1 as Ax -4 0.

This proves (3.8). The proof for (3.9) is similar.

We can state now

Theorem 3.4. If the function VAX(x, t) defined in (1.2), obtained from the solution of the Legendre collo-
cation scheme (3.1) at the Legendre Gauss-Lobatto points xj, converges almost everywhere to a function

u(x, t), then u(x, t) is a weak solution to (1.1).

Proof: By assumption, vAX(x, t) converges to u(x, t) boundedly a.e. Also, there is no problem about the

uniform convergence of 0 1 (x, t), (N-1)(x, t) and (¢N-1)P (x,t) due to the smoothness of ¢. Using
the dominant convergence theorem, taking the limit as Ax -4 0 in (3.8), (3.9) and (3.7), we obtain (1.3).

This proves that u(x, t) is a weak solution of (1.1).

We close this section by commenting on other spectral viscosity terms in (3.1) that stabilize the Legendre

method. One such term is

a aUlN
aNX aX

where the spectral viscosity operator Q is defined by

N

Qq E Qk= kPk(X)

k=O

6



where

N

k=O

and

Qk = O,k < mN

1> Qk >_) 1 k > MN

with mN growing with N.

We can establish also for this viscosity term that

(ON-1, SV(uN)) -- 0

and therefore the result above holds also for this kind of spectral viscosity.

4. Chebyshev Spectral Collocation Schemes. In this section we consider the Chebyshev collocation

schemes. These are more difficult to analyze than the Legendre method because of the weight function 1

The Chebyshev collocation method can be written in the following way:

(4.1) aUN(X,t) OJNf(UN(X,t)) _ (-1) [ i
2s

(4.1)- N 2+ 1 [VlXJ UN(Xt)+BuN(Xt)

where again UN(X, t) is the numerical solution which is a polynomial of degree at most N in x, JN is the

Chebyshev interpolation operator, i.e. for any function g(x), JNg(x) is the unique polynomial of degree at
most N satisfying JNg(xj) = g(xj) at the N + 1 Chebyshev Gauss-Lobatto points xj. f is the superviscosity
coefficient, s is an integer growing with N [21, 14, 15]. We remark again that this superviscosity term, which
in practice is equivalent to a low pass filter, or a similar vanishing viscosity term [16, 17], is needed in order

for the assumption "vAx (x, t) converges boundedly a.e. to a function u(x, t)" to be realistic. Finally, the

boundary term BUN(X, t) could be either 0, or

T(UN(1,t) - g1)(1 + x)TW(x),

or

r(UN(-1,t) - g-i)(1 -x)T'(X),

or a combination, depending on the wind directions at the boundary points. Here T is a constant chosen for

stability and g, and g-1 are functions of the time only.
Let O(x, t) be a test function in C5, that is, all x derivatives of O(x, t) up to order 5 vanish at the boundary

points x = ±1. Such test functions are, of course, dense in Co. It follows that (1 - x2)-3/2¢(x, t) is in C 3.

We denote the (N - 5)-th degree Chebyshev interpolation polynomial of the function (1 - x2)-3/2¢(x, t) by

(4.2) N- 5(x, t) = JN-5((1 - X2)-1/20(X, t)),

and note that

N-5(X,t) -* (1- x 2
)-

3 / 2 
O(x,t),

aN-5(X, t) 0 ((1 - x2)-3/2(x, t)) aN- 5(X, t) a ((1 - x2)-a/ 2 o(x, t))
ax Ox at at

7



uniformly. We now take

(4.3) VN-1(X,t) = (1-2

then ON-1 is a polynomial of degree at most N - 1 and vanishes at both boundary points x = ±1 together

with its first and second x derivatives. Moreover, it can be easily verified that

(4.4) (N-1(Xt) - t) N-1 (x, t) 0 (x t) N-1(X,t) o- (x, t),V\ 1-X 2---X2 )\ 1y-Z-X 2 ) t

uniformly.

We again first show that the boundary term does not cause a problem:

Lemma 4.1.

(4.5) (l + X) Tk(x) N1Xt) dx = 0, 1(1- x) Tk (x) 'N-l (X, t) dx = 0.
1 1-1 /1 --X 2

Proof: We only prove the first equality. Zero boundary values of ON-1 (X, t) and its first x derivative imply

1 + '(X))N- (X, t)dx I TN(X) N-1(X, t)(1 +x)) dx1 + /1 V - x 1- X f l ( V - X

TN (x) (ON-((xt) (1+ x) + ONi(X, t)) dx

0.

The last equality is due to the fact that

-N1 (X, t)( 1 + X) + _ ON- (X, t)( 1 + X) + (1 + X)(1 -_ X2)N--5(X,t)
tOX 1 - x ax

is a polynomial of degree at most N - 1, hence is orthogonal to TN(x) with the weight 2.

With (4.5), we can now multiply (4.1) by ON-( ,t), integrate over x, and integrate by parts for the

second term to obtain
f1 ON-(X,t) aUN(X,t) dx [1( JNf(UN(X,t))dx

1 V(_l)2Sa .=J1 gJ -l Xt) 2 x 2

(4.6) - : J 1) [(1 - X2)-ax2 UN(X,t) dx.

We now estimate the right hand side of (4.6):

Lemma 4.2.

1l r &2s
(4.7) lim N)sX t 1-X 2  N '

N-"4oc 1 l/-f - x UN (X
, t) dx =  0.

Also, the quantity under the limit sign is uniformly bounded with respect to t.

Proof: Integrating by parts 2s times, and noticing that the boundary terms are always 0 because of the fact

that ON-I(X, t) vanishes at the boundaries and because of the factor V1- x 2 , we obtain

(4.8P N- (x,t) r x 2(48 f UN (x,t) dx X2 '9-fZ x VI N-1(X, t) dx.



Recalling the definition of 5N (X, t) in (4.2), we have

N-5

N-5(X,t) = E k(t)Tk(X)
k=O

where k (t) are the collocation Chebyshev coefficients of the Co3 function (1 -x 2
)-3/24(x, t), hence

(4.9) C (t) _! C

Now, by the relationship between ON-1 and N-5 in (4.3):

N-5

ON-1l(X, t) = (1 _-x 2 )2 
E &k(t)Tk(X)

k=O

N-5

= 4(1 - T2 (X)) 2  
W (t)Tk(x)

k=O
1N-5 1N-5

= 4 E &k(t)Tk(x) - 4 E &M (Tk+2(X) + Tk-2(X))

k=O k=O

1 N-5
+16 E &k(t) (Tk+ 4(X) + 2Tk(x) + Tk- 4(X))

k=O
1 N-I

= 16 E (-n(t) - 4k- 2(t) + 6k(t) - 4&+ 2 (t) + k+4 (t)) Tk(X)
k=0

N-1E- k(t)Tk(X)
k=O

where we take the convention that k(t) = 0 for k < 0 or k > N - 5. This, together with (4.9), clearly
implies

(4.10) I~k(t)I_ -"

We now use the equality

V/ _ 2s N-I

(4.11) 1 lx- J PN-,(x,t) 5(-1)Sk2Stk(t)Tk(x)
k=O

and the integral-quadrature equivalence:

I 2s N
t) (Xj, t)

j=O

where xi and wj are the nodes and weights of the Chebyshev Gauss-Lobatto quadrature formula, because
the integrand

r 0 1 2s

UN(X,t) [f 1- X2  VkN-1 (X, t)

is a polynomial of degree at most 2N - 1. This, together with the uniform boundedness of UN(Xi,t) and
(4.8), (4.10) and (4.11), implies (4.7) and the uniform boundedness of the quantity under the limit sign with
respect to t.

9



We thus only have to deal with the left hand side of (4.6). We integrate (4.6) in t, integrate by parts for

the first term, and use Lemma 4.2 to obtain:

-f
T

j (N(xt) (N
-

I(x
' t )

) ±JNf(UN(Xt)) (O Xt)) ) dxdt
(U (X

f ~ N x ' ) 
t) (O x d

(4.12) - ux,0),O '(x'0) dx = o(l).
-"/ V± -x

Again, the difficulty is that we have only assumed the uniform boundedness of UN(Xj, t), hence of f(uN(Xj, t)),

not the uniform boundedness of either uN(x, t) or JNf(UN(X, t)). We again get around this by switching

between integrals and quadrature summations:

f (UN(X, t) (b
N - (

x
'
t)) + JN(UN(Xt)) (ON-I(Xt)) dx

N - ~jxxx(4.13) wj 11 - x2 (uN(xJt) (ON-,I(x, t))j ±f(UN (XiW ( ONl(x,))

j=O_

because we can easily verify that the integrand

1 -X2 (UN(X,t) +JNf(uN(X,t)) ON-I(X,t))

is a polynomial of degree at most 2N - 1. Recalling the definition of the function vAx(x, t) in (1.2) and that

of h0A(x,t) etc. in (2.10), we can use (4.13) to rewrite (4.12) as

- j 0(x) (VAx(x, t) (PN-(X, t)) Ax±+ f(VA.(X, t)) (I x't ) ) dxdt

(4.14) - 0(X] )vA(x,0) ( ON1jX0) dx = o(1)

where

0 (X) - Wj%/ xi X j: X < Xj+I.

xj+_- xj

Clearly, 0(x) is uniformly bounded and converges to 1 as Ax -4 0. By assumption, vAx(x, t) converges to

u(x, t) boundedly a.e. Also, (4.4) guarantees the uniform convergence of the N-1 related terms to the right

limits. Using the dominant convergence theorem, taking the limit as Ax - 0 in (4.14), we obtain (1.3).

This proves that u(x, t) is a weak solution of (1.1), i.e. we have proved the following

Proposition 4.3. If the function vA.(x, t) defined in (1.2), obtained from the solution of the Chebyshev

collocation scheme (4.1) at the Chebyshev Gauss-Lobatto points xj, converges almost everywhere to a

function u(x, t), then u(x, t) is a weak solution to (1.1).

5. Multi-Domain Legendre Methods. In this section we will discuss stable and conservative inter-

face boundary conditions for the multi-domain Legendre method applied to equation (1.1). We assume that

the domain -1 < x < 1 is divided into two domains, and for the sake of simplicity we assume that the

10



interface point is x = 0. We will denote by UN (x, t) the numerical approximation in -1 < x < 0 and by

VN(X, t) the solution at 0 < x < 1. The multi-domain Legendre method is given by

OUN &a9U + N aIkf(UN) = B(UN(-1, t)) + -rQ'(x) [f+(UN(O, t)) - f+(vN(O, t))]

(5.1) a I+±2Q(x) [f-(uN(O, t)) - f-(VN(O, t))] + SV(UN),

-VN + a+Illf(vN) -3Ql
1

(X) [f+(VN(O, t)) - f+(UN(O, t))]

+TF4QI(X) [f-(vN(O, t)) - f(N(0,t))]

(5.2) +SV(vN) + B(VN(1, t)).

Equation (5.1) holds in the interval -1 < x < 0, and (5.2) holds in 0 < x < 1. Ikf(UN) interpolates f(uN)

at the zeroes Cj of the polynomial xQ I and Illf(vN) interpolates f(vN) at the zeroes rj of the polynomial

xQ I", where

Q(x ) = (1 + x)P(2X + 1),QIl(x) = (1 - x)P'(2x - 1)
P '(1) P N (_1)

The spectral viscosities SV(UN) and SV(VN) are of the form

(5.3) SV(UN) = -- e -±}- 1)9 UN,

(5.4) SV(VN) = F [x(1 - x)-T9 VN.

At this point we stress that the results of this section are valid only for this form of spectral viscosity

and not for the others discussed in Section 3. The reason for that will be evident in the proof.

Finally the boundary operators B at the ends of the interval -1 < x < 1 are left unspecified for now.

We will also denote the scalar product (p,q)N = 0ZpT(Cj)q( j)wj if p(x) and q(x) are defined in

[-1,0] and (p,q)N = F-pT(7j)q(? 7j)wj if p(x) and q(x) are defined in [0,1], and wj are the weights in
the Gauss-Lobatto Legendre quadrature formula. Note that if pq is a polynomial of degree at most 2N - 1

defined in [-1,0] then

(p, q) N = (p, q) = JPT(x)q(x)dx.

A similar formula holds in the interval [0, 1].

Our aim in this section is to show that the choice of the parameters Ti, i = 1,4 that leads to linear
stability is sufficient for proving conservation, i.e. if the numerical solution UN (X, t), vN (X, t) converges

boundedly a.e to functions u(x, t), v(x, t), then the solution w defined by w(x, t) = u(x, t) if -1 < x < 0 and

w(x,t) = v(x, t) if 0 < x < 1 converges to the weak solution of (1.1).

We will discuss first the stability of (5.1)-(5.2). We state

Proposition 5.1. The boundary operators are dissipative, i.e.

(5.5) (UN,B(UN(-1, t)))N + UN(-1,t)Aun(-1,t) < 0,
2

(5.6) (VN,B(vN(1,t)))N -- vT-1tAN,) <0O.

2U
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Proposition 5.1 implies that the boundary treatment at the end-points of the interval is stable. Example

of such operators are given in [4].

We are ready to state the stability theorem for the linear constant coefficient case. In this case there

is no need for the spectral viscosity terms and we will ignore them. We assume that f = Au where A is
symmetric in equation (1.1) and in the same way f+ = A+u, f A-u where the eigenvalues of A + are

nonnegative and those of A- are nonpositive.

Theorem 5.2. Let UN, VN be the solutions of (5.1)-(5.2). Define

E(t) = (UN(X, t), UN(X, t))N + (VN(X, t), VN(X, t))N

then

E(t) < E(O)

provided that

1 1 1 1(5.7) "1  20, r2  - 73 < --- 0 T4 > 0(57 F 52wo' 2w0  2 w0  2 w0

1 1
T-T31 - -, 2-T4 = -.

WO WO

Proof: The proof follows from multiplying (5.1), (5.2) by uT v T and taking the scalar product. We use

Proposition 5.1 and the following notation

Uo = UN (0,0 vN (0, t), a± uoA±uo, = voA±vo, y( = uoA±vo

to get

1 dE(t)<(Tl_ 1 + 1 +

2wo dtt ( 2wo) -- (T0 "-"3)-"-(T 3 4

11(5.8) _(2 ao - (-2 + r4 )'yj + (_4 +
2wo 0  (+

The conditions stated above for the ri's guarantee that the right hand side of (5.8) is nonpositive and

the proof is completed.

Remark: The Discontinuous Galerkin method applied to this problem leads to the upwinding choice -1 =

T4 = 0, 72 3= _!-. Another attractive choice that involves no splitting of the fluxes is Ti = = -r--3 =

-T4 = -g

We turn now to the main purpose of this section, namely the proof of convergence in the nonlinear case

of the numerical solution to the correct entropy solution.

We first show that the spectral superviscosity terms do not create any problems: consider a compactly

supported (in [-1,1]) test function T(x, t) in C m [-1, 1], m is to be specified later.

Lemma 5.3. Let ON-1 (x, t) and ON-1 (x, t) be the Legendre interpolation polynomials of T(x, t) in the

intervals [-1,0] (with collocation points j), and [0, 1] (with collocation points qj), respectively. Then

(5.9) lim (ON-l, SV(UN)) = 0,
N-4oo

(5.10) lim (WN-1,SV(vN)) = 0.
N-+oo

12



where the spectral superviscosities are defined in (5.3) and (5.4).

Proof: Since UN is a polynomial of degree N it can be represented as

N

UN(X) = Z tk,NPk(2x + 1).
k=O

Therefore from (5.3)

SV(UN) 5- -x(x + 1)-] UN

N
2-- 1 s k(k + 1) '3 ,NPk(2x + 1).

k O

Also the test function qN-1 can be represented as

N

ON- 1 = E k,NPk(2x + 1).
k=O

LFrom the orthogonality of the Legendre polynomials it follows that

N

I(ON-1, SV(UN)) F N 1 -- k,Nfik,NkO(k+ 1)(Pk(2x +l),Pk(2x+ 1)).
k=O

We can choose m large enough such that

ljkNftk,N1 !5 T3-_

and since ik and (Pk(2x + 1), Pk(2x + 1)) are bounded, the proof is established. The proof for (5.10) is

similar.

It is self evident that the form of the spectral viscosity SV is crucial. In fact the factor 1 - x2 is necessary
in the proof. Note that

(5.11) (ON-1,SV(uN)) = (SV(ON-1),UN) = (SV(ON-1),UN)N

We basically proved that the first argument in the scalar product in the right hand side of (5.11) tends to
zero whereas the second argument is bounded. The relation (5.11) is not true for other forms of the spectral

viscosity where the factor 1 - x2 does not appear.

Lemma 5.4. Let T satisfy (5.8), then

( O U-i, aTj)N - (f(uN), N-1 )N + ki, V N - (f(VN), )N,

(5.12) = (N-1, SV(uN)) + (ON-1, SV(vN))

Proof: Taking the scalar product of equation (5.1) with ON-, and (5.2) with ON-I and denoting by f(0, t) =

fo, for all the quantities one gets

(ON-l, "- -)N + (4N-l, DI- (UN) )N=7 (f+(Uo) - f+(vO)) WO
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+ T2o (f-(uo) - f-(o)) WO

(5.13) +(ON-l, SV(UN))N,

(N1, V)Nv + (-i, N))N =73 0o (f+(vo) - f+(uo)) Wo

T40o- f (vo) - f (uo)) Wo
(5.14) +(ON-1, SV(V,.))N).

Here we used the fact that 0(-1, t) = ¢(1, t) = 0.
Now,

(95N-l, 0kf(UN) )N = ( aN-l, 0If(UN)

= ¢of(Uo) - (IN'f(UN), 0¢N-1
ax

(5.15) = 0f(uo) - (f(uN), N-)N

and by the same token

(5.16) (V'N-1, 19NfV))N = -00f(VO) - (fVN), aO-)N
Ox O9x

Using (5.15)-(5.16) in (5.13)-(5.14) one gets

(ON-], )U - (f(UN), aO-)N + (OAT, 09V (7)~N), O~I VN1)ji- ) ax aot (V) [ a
= (f+(u0) - f+(vo)) [71WO - r3 wo - 1] 0 + (f-(uo) - f(vo)) [72wo - T4WO - 11 0

+ (qON-1,SV(UN)) + (4/N-I,SV(vN)).

Taking (5.8) into account, the lemma is proven.

We integrate now (5.12) with respect to time to get

O(IN-" _O)N-1\ (fw- (V) O9b-1f ~ ~ ~ ~O I U,(f(Nax"ta
___ at2_ + (V'Ndt

,T{~ ~ fu) x v,~ fv) Ox ) N }
= - (UN(t = 0),ON-1(t 0)) - (VN(t = 0), ON-l(t = 0)).

We now use Lemma 3.3 in Section 3 to convert UN, VN to UAx vAx, which are defined in (1.2) as the

piecewise polynomials having the values of UN, VN at the grid points. Combining then with Lemma 5.3 it

follows:

Theorem 5.5. Let UN and VN be the multi-domain Legendre approximation (5.1)-(5.2) to (1.1). Assume

that the functions uA,, and vA defined in (1.2) converge boundedly a.e., then the limit function is a weak

solution of (1.1).
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